Copied to
clipboard

G = C2×C335Q8order 432 = 24·33

Direct product of C2 and C335Q8

direct product, metabelian, supersoluble, monomial

Aliases: C2×C335Q8, C62.98D6, (C3×C6)⋊6Dic6, (C32×C6)⋊5Q8, C3315(C2×Q8), C62(C322Q8), C3⋊Dic3.48D6, C3211(C2×Dic6), (C32×C6).73C23, (C3×C62).36C22, C22.7(C324D6), (C2×C6).65S32, C6.102(C2×S32), C33(C2×C322Q8), (C6×C3⋊Dic3).10C2, (C2×C3⋊Dic3).13S3, C2.9(C2×C324D6), (C3×C6).123(C22×S3), (C3×C3⋊Dic3).47C22, SmallGroup(432,695)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C2×C335Q8
C1C3C32C33C32×C6C3×C3⋊Dic3C335Q8 — C2×C335Q8
C33C32×C6 — C2×C335Q8
C1C22

Generators and relations for C2×C335Q8
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=fbf-1=b-1, cd=dc, ece-1=c-1, cf=fc, de=ed, fdf-1=d-1, fef-1=e-1 >

Subgroups: 856 in 210 conjugacy classes, 63 normal (7 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C2×C4, Q8, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C62, C62, C2×Dic6, C32×C6, C32×C6, C322Q8, C6×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C3×C62, C2×C322Q8, C335Q8, C6×C3⋊Dic3, C2×C335Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, C22×S3, S32, C2×Dic6, C322Q8, C2×S32, C324D6, C2×C322Q8, C335Q8, C2×C324D6, C2×C335Q8

Smallest permutation representation of C2×C335Q8
On 48 points
Generators in S48
(1 5)(2 6)(3 7)(4 8)(9 34)(10 35)(11 36)(12 33)(13 38)(14 39)(15 40)(16 37)(17 29)(18 30)(19 31)(20 32)(21 27)(22 28)(23 25)(24 26)(41 48)(42 45)(43 46)(44 47)
(1 35 39)(2 40 36)(3 33 37)(4 38 34)(5 10 14)(6 15 11)(7 12 16)(8 13 9)(17 22 41)(18 42 23)(19 24 43)(20 44 21)(25 30 45)(26 46 31)(27 32 47)(28 48 29)
(1 39 35)(2 36 40)(3 37 33)(4 34 38)(5 14 10)(6 11 15)(7 16 12)(8 9 13)(17 22 41)(18 42 23)(19 24 43)(20 44 21)(25 30 45)(26 46 31)(27 32 47)(28 48 29)
(1 39 35)(2 40 36)(3 37 33)(4 38 34)(5 14 10)(6 15 11)(7 16 12)(8 13 9)(17 22 41)(18 23 42)(19 24 43)(20 21 44)(25 45 30)(26 46 31)(27 47 32)(28 48 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 44 3 42)(2 43 4 41)(5 47 7 45)(6 46 8 48)(9 29 11 31)(10 32 12 30)(13 28 15 26)(14 27 16 25)(17 36 19 34)(18 35 20 33)(21 37 23 39)(22 40 24 38)

G:=sub<Sym(48)| (1,5)(2,6)(3,7)(4,8)(9,34)(10,35)(11,36)(12,33)(13,38)(14,39)(15,40)(16,37)(17,29)(18,30)(19,31)(20,32)(21,27)(22,28)(23,25)(24,26)(41,48)(42,45)(43,46)(44,47), (1,35,39)(2,40,36)(3,33,37)(4,38,34)(5,10,14)(6,15,11)(7,12,16)(8,13,9)(17,22,41)(18,42,23)(19,24,43)(20,44,21)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,39,35)(2,36,40)(3,37,33)(4,34,38)(5,14,10)(6,11,15)(7,16,12)(8,9,13)(17,22,41)(18,42,23)(19,24,43)(20,44,21)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,39,35)(2,40,36)(3,37,33)(4,38,34)(5,14,10)(6,15,11)(7,16,12)(8,13,9)(17,22,41)(18,23,42)(19,24,43)(20,21,44)(25,45,30)(26,46,31)(27,47,32)(28,48,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,44,3,42)(2,43,4,41)(5,47,7,45)(6,46,8,48)(9,29,11,31)(10,32,12,30)(13,28,15,26)(14,27,16,25)(17,36,19,34)(18,35,20,33)(21,37,23,39)(22,40,24,38)>;

G:=Group( (1,5)(2,6)(3,7)(4,8)(9,34)(10,35)(11,36)(12,33)(13,38)(14,39)(15,40)(16,37)(17,29)(18,30)(19,31)(20,32)(21,27)(22,28)(23,25)(24,26)(41,48)(42,45)(43,46)(44,47), (1,35,39)(2,40,36)(3,33,37)(4,38,34)(5,10,14)(6,15,11)(7,12,16)(8,13,9)(17,22,41)(18,42,23)(19,24,43)(20,44,21)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,39,35)(2,36,40)(3,37,33)(4,34,38)(5,14,10)(6,11,15)(7,16,12)(8,9,13)(17,22,41)(18,42,23)(19,24,43)(20,44,21)(25,30,45)(26,46,31)(27,32,47)(28,48,29), (1,39,35)(2,40,36)(3,37,33)(4,38,34)(5,14,10)(6,15,11)(7,16,12)(8,13,9)(17,22,41)(18,23,42)(19,24,43)(20,21,44)(25,45,30)(26,46,31)(27,47,32)(28,48,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,44,3,42)(2,43,4,41)(5,47,7,45)(6,46,8,48)(9,29,11,31)(10,32,12,30)(13,28,15,26)(14,27,16,25)(17,36,19,34)(18,35,20,33)(21,37,23,39)(22,40,24,38) );

G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,34),(10,35),(11,36),(12,33),(13,38),(14,39),(15,40),(16,37),(17,29),(18,30),(19,31),(20,32),(21,27),(22,28),(23,25),(24,26),(41,48),(42,45),(43,46),(44,47)], [(1,35,39),(2,40,36),(3,33,37),(4,38,34),(5,10,14),(6,15,11),(7,12,16),(8,13,9),(17,22,41),(18,42,23),(19,24,43),(20,44,21),(25,30,45),(26,46,31),(27,32,47),(28,48,29)], [(1,39,35),(2,36,40),(3,37,33),(4,34,38),(5,14,10),(6,11,15),(7,16,12),(8,9,13),(17,22,41),(18,42,23),(19,24,43),(20,44,21),(25,30,45),(26,46,31),(27,32,47),(28,48,29)], [(1,39,35),(2,40,36),(3,37,33),(4,38,34),(5,14,10),(6,15,11),(7,16,12),(8,13,9),(17,22,41),(18,23,42),(19,24,43),(20,21,44),(25,45,30),(26,46,31),(27,47,32),(28,48,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,44,3,42),(2,43,4,41),(5,47,7,45),(6,46,8,48),(9,29,11,31),(10,32,12,30),(13,28,15,26),(14,27,16,25),(17,36,19,34),(18,35,20,33),(21,37,23,39),(22,40,24,38)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C3D···3H4A···4F6A···6I6J···6X12A···12L
order12223333···34···46···66···612···12
size11112224···418···182···24···418···18

54 irreducible representations

dim11122222444444
type++++-++-+-+
imageC1C2C2S3Q8D6D6Dic6S32C322Q8C2×S32C324D6C335Q8C2×C324D6
kernelC2×C335Q8C335Q8C6×C3⋊Dic3C2×C3⋊Dic3C32×C6C3⋊Dic3C62C3×C6C2×C6C6C6C22C2C2
# reps143326312363242

Matrix representation of C2×C335Q8 in GL6(𝔽13)

100000
010000
0012000
0001200
0000120
0000012
,
100000
010000
0001200
0011200
000010
000001
,
010000
12120000
001000
000100
000010
000001
,
100000
010000
001000
000100
00001212
000010
,
100000
12120000
000100
001000
000036
0000710
,
1200000
0120000
000100
001000
000055
000008

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,7,0,0,0,0,6,10],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,5,8] >;

C2×C335Q8 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes_5Q_8
% in TeX

G:=Group("C2xC3^3:5Q8");
// GroupNames label

G:=SmallGroup(432,695);
// by ID

G=gap.SmallGroup(432,695);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,64,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=f*b*f^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,c*f=f*c,d*e=e*d,f*d*f^-1=d^-1,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽